175 research outputs found

    Lonely Sounds: Recorded Popular Music and American Society, 1949-1979

    Get PDF
    Abstract: Lonely Sounds: Popular Recorded Music and American Society, 1949-1979 Lonely Sounds: Popular Recorded Music and American Society, 1949-1979 examines the relationship between the experience of listening to popular music and social disengagement. It finds that technological innovations, the growth of a youth culture, and market forces in the post-World War II era came together to transform the normal musical experience from a social event grounded in live performance into a consumable recorded commodity that satisfied individual desires. The musical turn inward began in the late 1940s. Prior to the postwar era, the popular music experience was communal, rooted in place, and it contained implicit social obligations between the performer and the audience and among members of the audience. Beginning in the late 1940s, technological, social, and cultural innovations, including new radio formats, automobile radios, and an expanding recording industry liberated popular music from some of the restraints of place and time. Listeners in the 1950s acquired expanded opportunities for enjoying music in ways that were more private, mobile, and intensely personal. Not only did the opportunities to listen alone expand enormously, but so also did the inclination. The postwar youth culture that grew up around the Top 40 radio format and 45-rpm singles stood at the vanguard of this revolutionary change in the musical experience. For many young listeners, rock and roll records represented a singular authentic experience. By the middle 1960s, these listeners believed that correctly listening to rock records not only revealed a unique self but also reintegrated alienated individuals into supportive communities. The isolated nature of the listening experience, however, poignantly frustrated such hopes. The dream of social renewal through rock records collapsed in the early 1970s. In its place came a more aggressive emphasis on self-sufficiency and personal control. In the subsequent decade devices such as the Sony Walkman successfully colonized public space, shielding listeners from other sounds while enclosing them in a private sonic environment of their choosing. This revolution in the musical experience, I contend, reflected and contributed to the pervasive sense of loneliness associated with the postwar era

    Frequency Versus Quantity: Phenotypic Response of Two Wheat Varieties to Water and Nitrogen Variability

    Get PDF
    Due to climate change, water availability will become increasingly variable, affecting nitrogen (N) availability. Therefore, we hypothesised watering frequency would have a greater impact on plant growth than quantity, affecting N availability, uptake and carbon allocation. We used a gravimetric platform, which measures the unit of volume per unit of time, to control soil moisture and precisely compare the impact of quantity and frequency of water under variable N levels. Two wheat genotypes (Kukri and Gladius) were used in a factorial glasshouse pot experiment, each with three N application rates (25, 75 and 150mgNkg−1 soil) and five soil moisture regimes (changing water frequency or quantity). Previously documented drought tolerance, but high N use efficiency, of Gladius as compared to Kukri provides for potentially different responses to N and soil moisture content. Water use, biomass and soil N were measured. Both cultivars showed potential to adapt to variable watering, producing higher specific root lengths under low N coupled with reduced water and reduced watering frequency (48h watering intervals), or wet/dry cycling. This affected mineral N uptake, with less soil N remaining under constant watering × high moisture, or 48h watering intervals × high moisture. Soil N availability affected carbon allocation, demonstrated by both cultivars producing longer, deeper roots under low N. Reduced watering frequency decreased biomass more than reduced quantity for both cultivars. Less frequent watering had a more negative effect on plant growth compared to decreasing the quantity of water. Water variability resulted in differences in C allocation, with changes to root thickness even when root biomass remained the same across N treatments. The preferences identified in wheat for water consistency highlights an undeveloped opportunity for identifying root and shoot traits that may improve plant adaptability to moderate to extreme resource limitation, whilst potentially encouraging less water and nitrogen use

    Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved (14)C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment (14)C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine (14)C and (10)Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.This work was funded by the Australian Research Council (FL100100195, DP170104665 and SR140300001) and the Natural Environment Research Council (NE/H009922/1 and NE/H007865/1)

    The GenoChip: A New Tool for Genetic Anthropology

    Get PDF
    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics

    Human–agent collaboration for disaster response

    Get PDF
    In the aftermath of major disasters, first responders are typically overwhelmed with large numbers of, spatially distributed, search and rescue tasks, each with their own requirements. Moreover, responders have to operate in highly uncertain and dynamic environments where new tasks may appear and hazards may be spreading across the disaster space. Hence, rescue missions may need to be re-planned as new information comes in, tasks are completed, or new hazards are discovered. Finding an optimal allocation of resources to complete all the tasks is a major computational challenge. In this paper, we use decision theoretic techniques to solve the task allocation problem posed by emergency response planning and then deploy our solution as part of an agent-based planning tool in real-world field trials. By so doing, we are able to study the interactional issues that arise when humans are guided by an agent. Specifically, we develop an algorithm, based on a multi-agent Markov decision process representation of the task allocation problem and show that it outperforms standard baseline solutions. We then integrate the algorithm into a planning agent that responds to requests for tasks from participants in a mixed-reality location-based game, called AtomicOrchid, that simulates disaster response settings in the real-world. We then run a number of trials of our planning agent and compare it against a purely human driven system. Our analysis of these trials show that human commanders adapt to the planning agent by taking on a more supervisory role and that, by providing humans with the flexibility of requesting plans from the agent, allows them to perform more tasks more efficiently than using purely human interactions to allocate tasks. We also discuss how such flexibility could lead to poor performance if left unchecked

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    The INT6 Cancer Gene and MEK Signaling Pathways Converge during Zebrafish Development

    Get PDF
    BACKGROUND: Int-6 (integration site 6) was identified as an oncogene in a screen of tumorigenic mouse mammary tumor virus (MMTV) insertions. INT6 expression is altered in human cancers, but the precise role of disrupted INT6 in tumorigenesis remains unclear, and an animal model to study Int-6 physiological function has been lacking. PRINCIPAL FINDINGS: Here, we create an in vivo model of Int6 function in zebrafish, and through genetic and chemical-genetic approaches implicate Int6 as a tissue-specific modulator of MEK-ERK signaling. We find that Int6 is required for normal expression of MEK1 protein in human cells, and for Erk signaling in zebrafish embryos. Loss of either Int6 or Mek signaling causes defects in craniofacial development, and Int6 and Erk-signaling have overlapping domains of tissue expression. SIGNIFICANCE: Our results provide new insight into the physiological role of vertebrate Int6, and have implications for the treatment of human tumors displaying altered INT6 expression

    SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0

    Get PDF
    Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Synthesizing datasets collected by different research networks presents opportunities to expand the ecological gradients and scientific breadth of information available for inquiry. Synthesizing these data is challenging, especially considering the legacy of soil data that have already been collected and an expansion of new network science initiatives. To facilitate this effort, here we present the SOils DAta Harmonization database (SoDaH; https://lter.github.io/som-website, last access: 22 December 2020), a flexible database designed to harmonize diverse SOM datasets from multiple research networks. SoDaH is built on several network science efforts in the United States, but the tools built for SoDaH aim to provide an open-access resource to facilitate synthesis of soil carbon data. Moreover, SoDaH allows for individual locations to contribute results from experimental manipulations, repeated measurements from long-term studies, and local- to regional-scale gradients across ecosystems or landscapes. Finally, we also provide data visualization and analysis tools that can be used to query and analyze the aggregated database. The SoDaH v1.0 dataset is archived and available at https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 (Wieder et al., 2020)

    The effects of IQPLUS Focus on cognitive function, mood and endocrine response before and following acute exercise

    Get PDF
    BACKGROUND: Phosphatidylserine (PS) is a phospholipid found in cell membranes of most animals and plants. PS has been shown to reduce stress and increase performance in runners, cyclists and golfers. The purpose of this study was to investigate the effects of a PS containing formulation on cognitive function, mood and endocrine response before and after intense resistance exercise. METHODS: 18 lower body, resistance trained, college aged males ingested 14 days of supplement (IQPLUS Focus, providing 400 mg of soy-derived PS) and a Placebo (PL), in a randomized, double-blind, placebo controlled, cross-over manner. Following 14 days of supplementation, participants performed an acute bout of lower body resistance training. Mood (Profile of Mood States, POMS) and cognitive function (Serial Subtraction Test, SST) were measured prior to, 5 minutes after, and 60 minutes after exercise. Venous blood samples were collected prior to, and 5, 15, 25, 40 and 60 minutes after exercise. Blood samples were analyzed for plasma cortisol and testosterone. Data were analyzed using repeated measures ANOVA. RESULTS: PS supplementation significantly reduced the time needed for a correct calculation on the SST by 20% (reduced by 1.27 s per calculation; PL: 6.4 s, PS: 5.13 s; p = 0.001), and reduced the total amount of errors by 39% (PL: 1.28 + .69, PS: .78 + .27, p = 0.53), and increased the amount of correct calculations by 13% (PL: 22.1 + 2.24, PS: 24.9 + 1.52, p = 0.07) prior to or in response to exercise compared to PL. Following exercise, there was no difference in SST scores between PS and PL. There were no significant changes in regards to mood or endocrine response to exercise as a result of PS supplementation. CONCLUSION: PS supplementation significantly increased cognitive function prior to exercise. Improved cognitive function could benefit athletes and non-athletes alike. PS did not appear to affect mood or endocrine response prior to or following resistance exercise
    corecore